

Teaching Maneuvers

Advanced Knowledge of the Commercial Maneuvers – The How's and the WHYs! Power Hour 199

Deep Dives Into

Steep Spirals

Deep Dives Into

Chandelles

Deep Dives Into

Lazy Eights

Deep Dives Into

Eights on Pylons

What's Right and What's Wrong

The images in the handbooks are not quite right!

What we will cover

The descriptions of to perform the maneuvers are mostly right!

Eights on Pylons

At a particular altitude for a given groundspeed a point on the ground will appear to pivot

Eights on Pylons

The question that isn't answered is WHY?

What we will cover

It's about a little geometry

Your line of sight equates to the angle of bank – This defines a cone

Too low – Apex of the cone is below the earth – a circle is made

Too high – a circle is also made but in a different direction

WHAT IF THE ALTITUDE IS TOO HIGH?

The higher the speed the larger the radius and vice versa

Pivotal Altitude=(GS)²/11.3

It is only necessary to calculate the highest pivotal altitude. Why not the lowest too?

Pivotal Altitude=(GS)²/11.3 – Example 90Kts with 20kt wind

PA with a 20kt tailwind is 1071 ft PA with a 20kt headwind is 434 ft

Pivotal Altitude=(GS)²/11.3 – Example 90Kts with 20kt wind

You would only need to fly between these two altitudes if you maintained the same indicated airspeed

Pivotal Altitude=(GS)²/11.3 – Example 90Kts with 20kt wind

Indicated airspeed is allowed to vary during this maneuver

Pivotal Altitude=(GS)²/11.3 – Example 90Kts with 20kt wind

If too high – pitch forward. This lowers the altitude and increases the airspeed which in turn raises the pivotal altitude

Pivotal Altitude=(GS)²/11.3 – Example 90Kts with 20kt wind

If too low – pitch up. This increases the altitude and decreases the airspeed which in turn lowers the pivotal altitude

Pivotal Altitude=(GS)²/11.3 – Example 90Kts with 20kt wind

This is referred to as a doubling effect

Pivotal Altitude=(GS)²/11.3 – Example 90Kts with 20kt wind

This is also the reason that only small changes in altitude are made

This diagram is WRONG!

The angles between the pylons are too shallow

At 45° the pylon would be intercepted and left at different points

The solid red lines show where the turn would begin and stop

It's sooner than they have drawn with the dashed red line

The pattern over the ground is incorrect – it shows constant radius

But there is wind – No correction for wind while turning can be made

If you try to correct for wind in the turn – your line of sight will change

The real ground track would resemble the red line

You are farthest from the pylon when no longer drifting – Red circles

You are farthest from the pylon when no longer drifting – Red circles

Steepest bank – red circles

Because no correction for wind drift is done while turning – A steep turn is required here to not get blown across the pylon

From the 1965 Flight Training Handbook

Steep Spirals

Steep Spirals

Some Lost Information – Recovered Here!

In the beginning it was over 10 turns to teach vertigo avoidance

After no vertigo – a ground reference is introduced to spiral over

The maneuver is started UPWIND. Why?

Why are all other ground reference maneuvers started downwind?

Because the max bank angle allowed is 45°

The downwind is where the steepest bank will be thus up to 45°

All other points during ground reference maneuvers will be under 45°

The Steep Spiral started Upwind with an allowable bank angle of 60°

The reason is that is was supposed to be landed from

At the completion of the turns the airplane was upwind for landing

Airspeed is the first parameter to go out of standard

Originally the speed was 1.3-1.4 Vso – Accelerated stall avoidance

Today a "Glide Speed" is used – Typically best glide

As bank angle increases, airspeed lost due to drag – Lower the nose

As bank angle decreases, airspeed increases – Raise the nose

The point to spiral over must be very close to the airplane fuselage

Chandelles

The image is not 100% correct

The turn radius decreases as speed is lost – It won't look like depicted

What is the pitch attitude at the 90° point?

It's the pitch attitude if held would result in the airplane being just above stall at the 180° point

Varies with the plane, density etc.

When is right rudder used less in a Chandelle - to the left or right?

When is right rudder used less in a Chandelle - to the left or right?

To the right during roll out – Why?

Left turning tendencies pull you left.

When rolling out of a chandelle to the right, left aileron is used to raise the wing.

This causes adverse yaw to the right helping cancel the left turning tendencies

Rolling out of a chandelle to the left you use right aileron to raise the wing

This causes adverse yaw to the left, adding to the left turning tendencies so more right rudder is needed

Lazy Eights

This image is not 100% correct – Similar to the Chandelles image

As the speed decreases the radius of the turn decreases

This image shows the turn radius mostly the same

The maneuver resembles a snowboarder in a half pipe

Entry speed is fast but at the top of the pipe it's slow – small radius

If the speed isn't slow enough at the 90° point the turn will not be completed to 180°

Visual references for 45°, 90°, 135° and 180° should be on the horizon

Rudder pressure – Rolling right at low airspeeds and high-power settings requires the most right rudder

Overbanking tendency requires slight opposite aileron

As speed decreases the outer wing produces more lift than the inside wing

Example: At very low speeds the inside wing may be almost stationary across the ground but the outside wing is still moving causing more lift and overbanking

Example: The faster the airspeed, the less this happens

